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1. Introduction 

At the request of Theo de Gelder (Dutch Ministry of Economic Affairs), we performed a review of the 

progress summary describing Adaptive Harvest Management for Pink-Footed Geese, written by Johnson, 

Jensen and Madsen (February 2013). 

Our findings are reported below. We start with a summary and discussion of our main findings (section 2). 

Then we give a brief description (section 3) of the work presented in the progress summary (in the 

following referred to as “the report”), using mostly our own wording. Next, we present in section 4 more 

detailed comments. Finally, a short bibliography is added and an appendix describing an application of 

state-space modeling to the data presented in the report. The latter should not be interpreted as criticism 

of the approach followed in the report. Rather, one of the reviewers had just applied the method to 

ungulate population data with a structurally identical underlying population model, and enjoyed testing the 

method on Pink-Foot Geese. 

We realized from the beginning that the objective of the method described in the report is to “maximize 

sustainable harvest, but avoid harvest decisions that are expected to result in a subsequent population size 

different than the population goal.” Choosing an optimization approach has many implications. It implies 

among others that population size is allowed to fluctuate within a certain bandwidth, as long as the harvest 

rate is maximized. This is thus different from a harvest strategy that tries to keep the population close to a 

desired level irrespective of the size of the harvest. It is outside the scope of this review to discuss the pros 

and cons of an optimization method. Nonetheless, we were quite interested in the question ‘when and 

where does it really make a difference?”. The research presented in the report has a large potential to shed 

some light on this question – we hope some of our comments will motivate the authors to do so. 

The harvest required to obtain a stable population depends on the survival rate and the reproduction rate. 

The authors use three models for the survival rate, assuming that the observed annual mortality can be 

split into natural mortality and hunting mortality such that hunting mortality is one-half of total annual 

mortality. Also, three models were used for reproduction without distinguishing adults from sub-adults. 

Combining the survival and reproduction models results into 9 different models for which an (optimal) 

harvest strategy can be derived. These nine models varied form a harvest of 500 to 17000 to stabilize 

current population size. In addition the authors derived optimal harvest strategies employing stochastic 

dynamic programming,. 
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2. Key Comments and Discussion 

First of all, we conclude that the authors are developing a very promising approach to determine harvest 

rates for use in adaptive management of the Pink-Footed geese, based on harvest maximization. They 

succeed in striking a good balance between simplicity and realism of models, as well as in exploiting all of 

the empirical data sources. 

The report provides information on 3 aspects of the adaptive harvest management for Pink-Footed geese, 

a) the selection of models with their structural definition, the determination of model coefficients and 

their goodness of fit on the monitoring data; b) the calculation of optimal harvest rates for each possible 

state of the system (population and important environmental variables); c) the application and integration 

of the calculated optimal harvest rates in an adaptive harvest management cycle of e.g., three years. 

Models 

The authors are bound to use a two stage population model, because their statistical methodology does 

not allow to estimate parameters of a three stage model.  We suggest a possible alternative way (state-

space modeling, see Schaub and Abadi, 2011; Buckland et al., 2004) to estimate model coefficients for 

each of the 9 models discussed in the report, and  thus enabling the use a three stage model. The state-

space modeling approach would allow estimation of natural survival rates and avoid the a-priori 

assumption that harvest mortality amounts to one-half of total mortality. It also provides a structured way 

to incorporate additional data becoming available with continued monitoring. Also the capture-recapture 

based data used in the report, could be incorporated in the suggested approach. 

Optimal harvest rates 

For the determination of optimal harvest rates we trust that the implementation of the method (stochastic 

dynamic programming) is correct (in theory, this could be checked from the source-code, by a person with 

hands-on experience with the program).  

From the text in the report we find it hard to grasp the exact meaning/definition of optimal harvest rates 

(see some of our comments to section V). A precise definition in words would help, in particular to 

understand the implications the choice of specific options/settings in the optimization method will have 

for application of the results in an adaptive harvest management cycle. Our current understanding is that 

optimal harvest rate depends on current state of the system (population and environment) and is the rate 

of harvesting that maximizes – when exerted over a long period (infinity?) with stochastic fluctuations in 

demographic rates and some environmental variables – harvest under the condition that the total 

population stays around a target level (e.g. 60k with standard deviation 10k, which seems rather large to 

us).  

Regarding the weighting of the models, the text suggests that weights are adjusted during the optimization 

process. On the other hand, it is stated everywhere that results apply to the situation with equal weights 

assigned to models. This brings us to the more theoretical question whether it is more clear/insightful to 

calculate a weighted average harvest rate over 9 models in every step of the optimization program, or to 

compare optimal harvest rates calculated for each model separately. As an alternative an uncertainty 

analysis using a simple single model, e.g. with a single survival and reproduction parameter and no density 

dependence, could be performed. 

Adaptive harvest management 

Missing from the report is a proposal for the way to integrate optimal harvest rates in a three-year 

management cycle. In the end, it is this aspect that will allow us to judge the usefulness of the 



optimization approach, and to evaluate whether its clear advantages outweigh its drawbacks (complexity 

of the methodology). To us, it is not immediately clear whether this is the case. Optimal harvest rates 

given a current state of the system are (if understood correctly) based on a kind of 

expected/average/uncertain future (accounting for environmental stochasticity like the number of warm 

days in May and for random variation in demographic rates). The realization in the three years of the 

management cycle following the choice of an optimal harvest rate will always be a particular sequence, of 

e.g., 2 warm May months and 1 cold. In hindsight, the adopted management action (a particular harvest 

rate) will not be optimal at all. Of course, AHM is adaptive, and designed to handle this situation by 

adjusting the harvest rate to one that is considered optimal for the updated system state, and also by 

updating the weight given to each model (if more than one) by a new fit of models on the extended set of 

monitoring data. But it also begs the question whether the proposed harvest rate really needs to be the 

long term optimal one and cannot be replaced by a harvest rate obtained from a simpler, non-optimizing 

modeling approach, e.g., 3 year stochastic simulations projecting population size and structure for a range 

of harvest rates, with each of the nine models. 

In general it would be interesting to get a feeling for the added value of the optimization approach. 

Comparison of results for the nine models in a stable state at 70k (discussed in the upper part of page 14) 

with Monte Carlo simulation results of optimal harvest rates (Table 2 on page 19) could be enlightening in 

this respect. However, a systematic comparison is not possible based on the information provided in the 

report. 

The importance/relevance of applying an optimization approach could be tested by comparing the results 

for harvest maximization, as described in the report, with results for harvest minimization. This would 

give us direct information on the range of outcomes using an optimization approach. When the 

bandwidth between maximized and minimized harvest is small, optimization is not really worth the 

trouble. In addition it would make the methodology useful for the management  of e.g., more numerous 

species, like the steadily increasing breeding population of Greylag geese in the Netherlands, where 

managing the population with minimal hunting effort appears to be more of an issue. 

 

 

 

  



3. Summary of the Work 

 

We go through the 6 main sections of the document and briefly describe the analyses performed by 

authors (in the following referred to as JJM) and the results that were obtained. 

I. Data 

JJM give an overview of the compiled relevant demographic and weather data. These refer to 

- Abundance. Estimates based on counts (around November 1; from 1965; DK, NL and B) and 

on capture-recapture (neck-banding during spring migration, re-sighting during migration and 

wintering periods; 1991-2003). Both estimates highly correlated (r=0.68); capture-recapture 

estimates on average 6 % higher.  

- Survival. From capture-recapture data (neck-banding; survival first 10 months; 1990-2002), scaled 

to annual survival. Partitioned into Nov-Jan en Feb-Oct periods. Important assumptions: harvest 

mortality additive to natural mortality & harvest mortality representing one-half of total mortality.  

JJM note that this might not be the case for recent years (harvest pressure likely increased in N 

and DK). No mention of age-dependent survival. 

- Harvest. Estimates from DK (1990-2010) and N (2001-2010). No discussion of reliability here. 

- Reproduction. Proportion of juveniles in the population and observations of average brood size 

in autumn (DK and NL, from 1980). Proportion is used as an indicator of reproductive success in 

the preceding  breeding season. 

- Weather Covariates. Snow cover in late May is expected to have an impact on breeding effort. 

Proxies (highly correlated with snow cover) are: number of days in May with mean temperature 

above 0 C (TempDays) & cumulative mean daily temperature sum above 0 C (TempSum). 

 

II. The Annual Cycle of Pink-Footed Geese 

In this section JJM formulate a simple 3-stage model, with age-classes juveniles (Y), sub-adults (SA) and 

adults (A), and investigate whether the available estimates of annual survival (1990-2002) and reproduction 

more or less reproduce the changes in population size observed in the population census. The one-step 

ahead predictions of total population size for these 13 years are compared to observed (census) population 

size, in Figure 3. The observation that the slope of a line fit through the points in the graph is not 

significantly different from 1, suggests that survival and reproductive estimates were unbiased.  

The 3-stage model is simplified to a 2-stage model, with the age-classes juveniles (Y) and sub-adults + 

adults (A), for use in the calculations of state-dependent harvest strategy (optimal harvest rate depending 

on extant population size and environmental conditions). The model is defined in two equations 

                     

                       

With    
    

      
 (p is the fraction of juveniles in the November population), t the survival rate, and ht 

the hazard rate at time t. From the transition equations, the harvest of adults and of young can be 

calculated as  
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Note that in the harvest of the young equation the coefficient d represents the differential vulnerability of 

young to harvest. JJM derive the value of d to be approximately 2, but acknowledge that it may likely vary 

over time, space and with population structure. The term between brackets represents the population of 

young before the harvest. 

 

III. Models of Survival and Reproduction 

Goal is “to develop a suite of models that fit the data but that also make different predictions of 

demographic rates outside the realm of experience”. Three models for survival and three models for 

reproduction are (separately) fitted on the data (Survival 1990-2002 in appendix 1). 

Survival (from non-hunting related sources) 

Random variation. Beta-distribution parameterized from mean and standard deviation of estimated 

survival from natural causes   ̂. The continuous distribution is transformed in a discrete distribution, 

with 5 classes between 0.90 and 0.98.  

   ̂ ~ Beta(125.16,6.46) 

Annual survival varies depending on weather conditions. Logit(  ̂) fit on various weather variables 

(least-squares regression). Fit compared with Akaike Information Criterium (AIC). Of all fit models, 

the ones with TempDays and TempSum have a comparable good score (low AIC). With TempDays 

as Xt, the model is: 

  ( 
 ̂ 

   ̂ 

)                

Annual survival varies depending on weather conditions and on population size at the start of the year 

(November 1). Same procedure, Nt in thousands, Xt as TempDays, resulting in the model: 

  ( 
 ̂ 

   ̂ 

)                        

The last model has the lowest AIC of all. It predicts a dramatic reduction in survival when population size 

exceeds 60 thousand. However, as JJM state, this conclusion involves extrapolating  beyond the limits of 

the data.  

JJM discuss the assumptions of additive mortality and harvest mortality being one-half of total mortality, 

and conclude that there is no substantive conflict between estimates of harvest and an additive mortality 

hypothesis. 

 

Reproduction 

Three models, with random variation, dependence on weather conditions and density-dependence, are 

fitted on the data of the census (fraction juveniles) from 1980-2011. A generalized linear model with logit 

link is fitted: 
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)               

Because in the 2-stage model there is no distinction between sub-adults and adults, the number of sub-

adults plus adults of the previous year is used for At. the counts of the young are assumed to be binomial 

or beta-binomial trials of Nt.  

Random variation. Beta-binomial model with no covariates. The distribution is discretized (5 classes). 

Model with dependence on TempDays 

  ( 
 ̂ 

   ̂ 

)                 

 

Model with density-dependence and TempDays. The model with the lowest AIC: 

  ( 
 ̂ 

   ̂ 

)                         

In the last model, with the lowest AIC, the coefficient for adult population size is only marginally 

significant, presumably because there is a lack of evidence for density dependence in the period after 2002. 

JJM suggest that, in a period of above-average temperature days, reproduction may have been released 

from density-dependent mechanisms.  

 

Dynamics of Temperature Days 

The authors analyze the dynamics of temperature days in May (1969-2011). No autocorrelation was 

observed. JJM specify a beta-binomial distribution for the proportion of warm days out of the possible 31 

days in May. Mean value is 7.3 days, so for the beta-binomial = 7.3/31= 0.23. JJM also specify a 

distribution for a warmer environment (assumption: mean number of days increased by one standard 

deviation) with mean of 12 warm days.   

 

IV. Annual-Cycle Models and Their Implications for Harvest Management 

 

JJM combine the 3 survival models with the 3 models for reproduction into 9 alternative “annual-cycle” 

models. By simulation they estimate the carrying capacity K: the population size resulting in absence of any 

harvest. Clearly, only in the models with density-dependence in survival and/or reproduction such a 

carrying capacity exists; the other models lead to exponential growth.  

The models with density dependent survival lead to unrealistically low carrying capacity of 59k to 66k 

(lower than the current population size). The models with density dependent reproduction predict higher 

K (120k to 129k). JJM remark that with higher temperatures in May a higher K will result. 

For each of these models the harvest rate can be calculated that is needed to make the population stabilize 

at a fixed level. From the harvest rate the harvest can be derived. For a population with the size at 



November 2010 (N = 70k; Y = 15.4k and A = 54.6k) and with temperature days as in May 2011 (10 days) 

JJM calculate the following harvest: 

0 – 500 in the models with density dependent survival (the ones leading to K < 70k!) 

Approximately 17k for two of the models without density dependence.  

5 – 11k for the other models 

With a harvest of approximately 11k (estimated for DK and N) the population increased from 70k to 80k; 

therefore JJM conclude that a larger harvest is needed for stabilization of the population. 

 

V. Harvest Management Implications 

JJM give a detailed description of the followed optimization approach, using the method of Stochastic 

Dynamic Programming. 

Optimal is defined as a maximization of harvest while keeping the population size close to a target level. 

Stochastic dynamic programming model optimizes harvest rates (not harvest). It integrates over the 9 

different models. Each model is assigned a weight. Weights are assumed to be equal here (at least, results 

are only given for the situation with equal weights). 

The result of the optimization calculations is big table defining for each state of the system (defined by 3 

variables here: number of adults (plus sub-adults), number of young birds, number of temperature days in 

May) the optimal harvest rate.  

From the optimal harvest rate the associated harvest can be calculated (this is not the optimal harvest as 

harvest was not maximized), for each model separately. By averaging these harvests, again assuming equal 

weights for the different models, JJM can provide and present the results for harvest in the same way as 

for harvest rates. 

Monte Carlo simulations of the optimal harvest rate for each model produce the result presented in Table 

2 (reproduced below, numbers in thousands, except for harvest rate).  

 
 

Performance metric  System model 
M0  M1  M2 M3 M4 M5 M6  M7  M8 

Young (sd)  6.7 (1.4)  6.7 (1.5)  6.6 (1.6) 8.6 (0.9) 8.7 (1.0) 8.1 (1.0) 8.7 (3.6)  8.8 (3.6)  8.04 (3.3) 
Adults (sd)  51.3 (2.2)  51.8 (1.6)  47.8 (1.1) 51.4 (2.1) 51.7 (1.6) 48.0 (1.1) 51.6 (2.5)  52.2 (2.2)  47.7 (1.3) 
Harvest rate (sd)  0.07 (0.04)  0.07 (0.04)  0.03 (0.03) 0.10 (0.04) 0.10 (0.03) 0.05 (0.03) 0.10 (0.05)  0.10 (0.05)  0.05 (0.05) 
Harvest (sd)  5.0 (3.0)  5.4 (3.0)  2.1 (2.3) 7.8 (3.4) 8.4 (3.2) 3.5 (2.4) 8.0 (5.0)  8.6 (4.9)  3.5 (3.6) 
Objective value (sd)  4.8 (2.8)  5.3 (3.0)  1.8 (2.1) 7.7 (3.3) 8.3 (3.1) 3.3 (2.2) 7.1 (4.3)  7.7 (4.3)  3.1 (3.2) 

 

VI. Future Needs 

The authors discuss the need to: 

1. Continue the monitoring of number of birds and the proportion of young 

2. Record and improve the estimates of harvest: total harvest, age-structure of harvest, number of 

harvest banded birds  

3. Obtain estimates of current rates of survival for the different stages (age-specific survival) 

ad 1) counts in November are problematic because they provide information on the post-harvest age 

structure, while the pre-harvest age structure is needed for the model. Also from a management point of 



view it is better to be able to base decisions on recent counts (e.g., directly before the hunting season) than 

on counts 9-10 months before the start of the hunting season.  

ad 3) JJM propose a comprehensive analysis of all mark-recapture data since 1990. In addition it is 

important to know whether there are (big) age-dependent differences in survival, as these can lead to 

transient dynamics (damped oscillations) and time delays in the response of the system to harvest.  

JJM discuss the application of the approach in an adaptive harvest management cycle of three years. This 

would imply that the (optimal) harvest rate is set for a period of 3 years. After 3 years the population state 

is assessed and an adjusted harvest rate is selected. According to JJM a three-year cycle introduces 

additional uncertainty in the projections of harvest and population size, that are required to optimize a 

harvest strategy. The framework described in the report is a “preliminary framework” and not yet 

operational for a three-year cycle. 

 

  



4. Detailed Comments 

 

Page 5. For survival the assumption that harvest mortality is one-half of total mortality seems quite 

drastic. A first check could be to compare the harvest numbers in DK (1990-2002) (assuming no harvest 

in N) to estimated survival of the monitored population (HarvDen, Survival and censusN in the table of 

Appendix 1). The results indicate that at the first half of this period the (minimum) estimate of harvest 

mortality is higher than one-half of total mortality, while in the second half it is approximately equal to 

one-half. Is this check too simple, e.g. because harvest estimates are too unreliable for this period? 

Year censusN 
Annual 

Survival 
Annual 

Mortality 
Harvest 

Denmark 
Natural 

Mortality 

Fraction 
Natural 

Mortality 

1990 26000 0.9201 2077 1800 277 0.011 

1991 32500 0.9672 1066 3000 -1934 -0.060 

1992 32000 0.9321 2173 2500 -327 -0.010 

1993 34000 0.9328 2285 2300 -15 0.000 

1994 33000 0.9256 2455 2600 -145 -0.004 

1995 35000 0.9171 2901 2800 101 0.003 

1996 33000 0.8531 4848 2000 2848 0.086 

1997 37500 0.8917 4061 2500 1561 0.042 

1998 44800 0.9149 3812 1414 2398 0.054 

1999 38500 0.9315 2637 1973 664 0.017 

2000 43100 0.8639 5866 2567 3299 0.077 

2001 45000 0.8671 5981 2353 3628 0.081 

2002 42000 0.8743 5279 2611 2668 0.064 

 

It seems quite unfortunate that no age-dependent survival estimates are available. In our appendix A we 

show that with a state-space model, all available data (in appendix 1) can be used to estimate survival for 

sub-adults and adults separately, assuming the 3-stage model described in the next section. 

Page 6. TempDays and TempSum are considered as the only weather covariates. The correlation between 

these two variables equals 0.86. It is therefore not surprising that TempDays and TempSum do equally 

well in regression models for survival and reproduction. 

Page 8. The 3-stage model is used only to make one-year ahead predictions for the period 1990-2002. We 

were able to reproduce Figure 3 using the data in Appendix 1. The table below shows the quantities used; 

the first 4 columns are taken from Appendix 1, and the remaining columns are calculated according to the 

formulae at the bottom of page 7 and the top of page 8. 

 

Year censusN censusNjuv Survival      
        

     1-        ̂ 

1990 26000 3224 0.9201 0.9584 0.9770 0.9601 0.1240 - 

1991 32500 7215 0.9672 0.9833 0.9694 0.9836 0.2220 32116 

1992 32000 1984 0.9321 0.9649 0.9651 0.9661 0.0620 32449 

1993 34000 6154 0.9328 0.9652 0.9623 0.9664 0.1810 36443 

1994 33000 4092 0.9256 0.9614 0.9579 0.9628 0.1240 35961 

1995 35000 8260 0.9171 0.9568 0.9296 0.9586 0.2360 39661 

1996 33000 6072 0.8531 0.9207 0.9372 0.9265 0.1840 36944 

1997 37500 5400 0.8917 0.9427 0.9523 0.9459 0.1440 34174 

1998 44800 5466 0.9149 0.9556 0.9623 0.9575 0.1220 38945 

1999 38500 4736 0.9315 0.9645 0.9362 0.9657 0.1230 47474 

2000 43100 2112 0.8639 0.9270 0.9284 0.9320 0.0490 35323 

2001 45000 4905 0.8671 0.9288 0.9319 0.9335 0.1090 41923 



2002 42000 4452 0.8743 0.9329 - 0.9371 0.1060 43960 

 

 

These values can be used to check whether the assumption holds that hunting mortality is one-half of 

total annual mortality. The assumed amount of hunting equals        and this can be compared with the 

sum of HarvDen and HarvNor taken from Appendix 1. In doing so, the missing values for HarvNor are 

replaced by 250. It appears that the assumption does not hold too good for the years 1991-1997 and for 

the year 1999 (compare last two columns of the table below). This could imply that natural survival is 

larger than assumed in this report.  

 

Year censusN HarvDen HarvNor    HarvDen+HarvNor        

1990 26000 1800 250 0.0399 2050 - 

1991 32500 3000 250 0.0164 3250 426 

1992 32000 2500 250 0.0339 2750 1103 

1993 34000 2300 250 0.0336 2550 1075 

1994 33000 2600 250 0.0372 2850 1265 

1995 35000 2800 250 0.0414 3050 1368 

1996 33000 2000 250 0.0735 2250 2571 

1997 37500 2500 250 0.0541 2750 1787 

1998 44800 1414 250 0.0425 1664 1596 

1999 38500 1973 250 0.0343 2223 1534 

2000 43100 2567 250 0.0680 2817 2620 

2001 45000 2353 400 0.0665 2753 2864 

2002 42000 2611 500 0.0629 3111 2828 

 

 

The authors state that Figure 3 suggests “that survival and reproductive estimates were unbiased”. 

Although stated cautiously this is a rather strong statement.  

Note also that different partitions of Survival into natural mortality and harvest rate may all more or less 

reproduce Figure 3. The formulae on top of page 8 all have the same multiplication factor 

  
         

             . This factor is more or less the same for every partition of Survival into natural 

mortality and harvest rate. Taking different values for this partition, i.e. different values of   in    

        , the multiplication factors below are obtained. Note that small values of   imply large hunting 

rates, and large values of   imply small hunting rates. 

 

Year                         
1990 0.966 0.963 0.961 0.958 0.957 

1991 0.933 0.935 0.937 0.939 0.940 

1992 0.933 0.933 0.933 0.933 0.933 

1993 0.926 0.926 0.927 0.927 0.927 

1994 0.917 0.918 0.918 0.919 0.919 

1995 0.855 0.859 0.861 0.865 0.867 

1996 0.891 0.888 0.886 0.884 0.883 

1997 0.914 0.913 0.912 0.910 0.910 

1998 0.931 0.930 0.929 0.928 0.928 

1999 0.866 0.870 0.873 0.877 0.878 

2000 0.867 0.867 0.867 0.866 0.866 

2001 0.874 0.874 0.873 0.873 0.873 

2002 - - - - - 

 

 This implies that something very similar to Figure 3 can be obtained for a large range of   values. 

 



Page 8. JJM discard the 3-stage model and replace it by a 2-stage model, mainly because there are no 

survival estimates and no census data available distinguishing between sub-adults and adults. JJM state that 

“Pink‐footed geese may not be sexually mature until age three”. Assuming sub-adults and adults to 

reproduce equally, thus seems like an undesirable simplification, leading to under-estimates of per-capita 

reproduction. JJM also assume that “Hunting mortality was additive to natural mortality and a constant 

one half of total annual mortality”. This is an important assumption since, see page 21, “survival is the 

most critical rate determining an appropriate harvest strategy”, that should – if possible – not be made a-

priori. We show that it is possible to fit a three stage model, to disentangle natural mortality from 

mortality through hunting and to estimate survival, using the whole time-series of census and harvest 

(appendix A). 

Page 9. The authors state that “the behavior of models outside the range of experience is often more 

important than that for which data are available”. This is the rationale for fitting different models for both 

survival and reproduction. An alternative could be to use a single model but with different parameter 

values which cover the range of plausible values. 

Page 10. Survival model (1). All survival models were fitted using the important assumption that hunting 

mortality is one-half of total annual mortality. Moreover these models are fitted using data in the years 

1990-2002 only. This is a period in which the population is growing slowly, in contrast to the larger 

growth in later years. The first model employs a Beta distribution. We were able to reproduce the 

parameter estimates 125.16 and 6.46 (we used maximum likelihood instead of the method of moments to 

obtain estimates 124.50 and 6.42). The Beta distribution is then discretized to a coarse grid. This seems 

unnecessary since drawing from a Beta distribution is rather simple. 

 

Page 10. Survival model (2). We were almost able to reproduce the parameter estimates at the top of page 

11. Using data for the years 1990-2002 we obtained logit(   = 2.770 + 0.0495    

 

Page 11. Survival model (3). Ordinary regression is applied to transformed observations. This assumes 

that the variance of the transformed values is constant. It is better to use logistic regression to fit this 

model. We were unable to reproduce the parameter estimates at the bottom of page 10. Using data for the 

years 1990-2002 we obtained logit(   = 4.114 + 0.0488    – 0.0366   . JJM state about this model that it 

“involves extrapolating beyond the limits of the data and thus lacks empirical evidence”. It may be 

hazardous to apply this model to later years with larger population sizes, since there does not appear to be 

a strong density dependence in the data (see Appendix 1). Of course possible density dependence in later 

years could be masked by warmer springs. 

 

Page 11-12. Reproduction models. Data from 1980 onwards were used to fit the three models. We 

obtained approximately the same parameter estimates for all three models. The last model, i.e. the beta 

binomial model with no covariates was again discretized. Again this seems unnecessary. 

 

Page 12. We were able to reproduce the estimates of the beta-binomial model for temperature days. 

Discretization of this distribution seems unnecessary. 

 

Page 13. The three models for survival and reproduction are then combined into 9 different models. 

Using the equation at the top of page 14 (which can be derived from the 2 equations at the bottom of 

page 8) the required harvest rate can be calculated. Using Y=15.4k, A=54.6, X=10, and applying the fitted 

models we obtained the values in the table below. 

 

model            
  Harvest  



   
  x 70k 

M0 0.9510 0.1222 0.1393 0.0770 5391 

M1 0.9619 0.1222 0.1393 0.0874 6121 

M2 0.8511 0.1222 0.1393 -0.0314 -2196 

M3 0.9510 0.1520 0.1792 0.1083 7581 

M4 0.9619 0.1520 0.1792 0.1184 8287 

M5 0.8511 0.1520 0.1792 0.0036 252 

M6 0.9510 0.1400 0.1628 0.0957 6698 

M7 0.9619 0.1400 0.1628 0.1059 7414 

M8 0.8511 0.1400 0.1628 -0.0105 -735 

 

Note that the models do not differ much in their value of   , but do differ considerably in their value of 

  . Especially the value for the density dependent survival model does seem to produce a rather low value 

of natural survival . For the observed population size in 2011 (80k) the survival rate of this model is even 

as low as 0.786.  This is due to extrapolation (which the authors noted on page 10).  

The authors state that for models M6 and M7 a harvest of approximately 17k is required. We arrive at a 

required harvest of 7k for these models.  

 

Page 14. The equation at the top of page 14 can be used to derive the required harvest rate to obtain a 

stable population of 60k under various parameter values   and  . This will give a range of required 

harvest rates. These parameter values can be assigned prior probabilities by using data, models and/or 

expert opinion, resulting in a mean harvest rate along with a standard error. This simple and robust 

approach can be also used for a population of 80k to see what has to be done extra to arrive at a 

population of 60k.  

 

Page 14. The likelihood at the bottom of page 14 employs a model specific prediction of population size. 

This is, as we assume, given the observed population size in the previous year. If this is correct, the 

comparison of the models is based on the one-year ahead predictions. This a rather limited comparison of 

the models since the starting point is always “correct”. The difference between the models becomes 

especially apparent after repeatedly applying the same model, as can be seen in the table at the bottom of 

page 13. Given this limited comparison the authors conclude that the 9 models should be assigned equal 

prior probability. However there seems scope to assign a (much) lower probability to the density 

dependent survival model. 

Page 16-18. Some aspects of the applied method (optimization, Stochastic Dynamic Programming) are 

not completely clear from the text. The description of the method suggests that model weights are 

updated inside the optimization procedures. However, it is also stated at many locations in the text that 

results apply to the case of equal weights assigned to the models. The optimal harvest rate is calculated for 

the period t=0 to t=T. Is T in this case infinity, or just a sufficiently large value, or related to a much 

shorter period? Which sources of stochasticity are accounted for in the optimization? The demographic 

rates and, for the models with weather variables, the number of temperature days in May? Or are there 

more? 

page 18. Harvest utility is given a mean value of 60k and a standard error of 10k. The standard error 

seems rather large. Does the value of the standard error affect the conclusions in any way? 

 

page 19. The table shows that under models M2, M5 and M8 (the density dependent survival models) the 

population size is approx. 56k instead of 60k as required. Is this due to the discrete values for harvest rate 

which are used in the simulation? 

 



page 20. I would be very nice indeed to have more data on the age structure of the population, either in 

spring (after reproduction) or in the autumn. Moreover the age structure of the harvest is also valuable 

information. Note that in our alternative model there is less need to have a census at another time as long 

as (1) harvest can be partitioned into pre/post census and (2) it can be assumed that natural mortality 

mainly is in winter and after harvesting. 

. 

 

page 20. We agree with the authors that it is more suitable to maximize harvest instead of harvest rate, 

when following an optimization method. As the authors show in appendix 2, this requires a pre-harvest 

census instead of post-harvest census.   
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Appendix A.  State-Space model 

The alternative model is a so-called state-space model which describes the population dynamics of the 

underlying process for three stages: juveniles, sub-adults and adults. The model assumes that  

1. natural mortality θ occurs in winter after the census in November but before reproduction in 

spring.  

2. natural mortality is the same for juveniles, sub-adults and adults. 

3. only adults, i.e. starting at age three, reproduce with reproduction parameter r 

4. harvest H is solely after reproduction in spring and fully before the census in November. 

5. the harvest data are without error and it is assumed that there was no harvest in Norway before 

2001. 

6. The differential harvest vulnerability of young equals 2. This implies that percentage young which 

are harvested is twice as large as the percentage sub-adults and adults. For instance suppose that 

the population size in spring equal 10000 juveniles, 10000 sub-adults and 5000 adults. A harvest 

of 5000 individuals is then partitioned into H0=1250 juveniles, H1=625 sub-adults and H2=3125 

adults. 

 

The process model, distinguishing between autumn and spring numbers, is then given by 

 

 

Year t Autumn ½  Autumn 1½  Autumn > 
2½ 

 

            

            

Spring 0  Spring 1  Spring > 2   

 -H0  -H1  -H2  

       

Year (t+1) Autumn ½  Autumn 1½  Autumn > 
2½ 

 

       
 

 

So from autumn to spring there is survival at a rate  , and reproduction by 3-year olds at a rate    . From 

spring to autumn there is no natural mortality but the numbers are decreased by subtracting the 

partitioned harvesting. The partitioning is according to the spring numbers. 

 

This model is deterministic. To introduce stochasticity the survived numbers in spring are assumed to 

follow a binomial distribution with binomial total the corresponding population size in autumn and 

binomial probability  . Moreover the number of offspring in spring is assumed to follow a Poisson 

distribution with rate parameter    . So 

 Spring0  ~ Poisson(    (Autumn > 2½)) 

 Spring1  ~ Binomial(Autumn ½,  ) 

 Spring>2  ~ Binomial(Autumn 1½ + Autumn 2½,  ) 

The population sizes in autumn are then simply obtained by subtracting the partitioned harvest: 

 Autumn ½ = Spring0  – H0 

 Autumn 1½ = Spring1  – H1 

 Autumn 2½ = Spring>2  – H2 

 



The parameters of this model, i.e.   and  , can be estimated using Bayesian techniques by imposing a so-

called observation process which links the observed counts Y to the underlying process given above. We 

assumed a Poisson distribution for this observation process, i.e.  

 Y½  ~ Poisson(N½) 

 Y1½ + Y2½  ~ Poisson(N1½ + N2½) 

in which Y denotes the observation in autumn and N the underlying process value in autumn. Note that 

this model does not require that observations are required for all stages. The program OpenBugs called 

from the R package was used to fit this model to the data for the years 1990-2011. The R code and 

necessary data files are given below. 

Three models were fitted: 

1. constant survival and reproduction 

2. survival and reproduction depend linearly on TempDays using a logistic link. In the R code the 

lines used are given by, with rr0, rr1, ss0 and ss1 the regression parameters 

    logit(rr[tt-1])  <- rr0 + rr1*(TempDays[tt]-8) 

    logit(s12[tt-1]) <- ss0 + ss1*(TempDays[tt]-8) 

3. survival depends on TempDays number of population size in the Autumn, and reproduction 

depends on TempDays and number of adults in Autumn, again using a logistic link. The R code 

for this model is given by: 

    logit(rr[tt-1])  <- rr0 + rr1*(TempDays[tt]-8) + rr2*(Autumn2[tt-1]-30000)/1000 

    logit(s12[tt-1]) <- ss0 + ss1*(TempDays[tt]-8) +  

ss2*(Autumn0[tt-1] + Autumn12[tt-1]-45000)/1000 

 

This results in posterior distributions for the parameters as well as for the fitted values, i.e. the underlying 

population sizes N½, N1½ and N2½. The figure below displays the data and the mean of the posteriors 

of the fitted values for the three models. 

 



 
 

It is clear that models 2 and 3 provide a better fit than model 1, and also that there is not much difference 

between model 2 and model 3. The mean of the posteriors of the parameters, along with a 95% posterior 

interval, are given in the table below. Note that for models 2 and 3 the estimates are on the logit scale 

 

Model 1 Intercept Slope TempDays Slope PopSize 

Reproduction 0.2420 (0.2400, 0.2427) - - 

Survival 0.9651 (0.9642, 0.9654) - - 

Model 2 Intercept Slope TempDays Slope PopSize 

Reproduction -1.2089 (-1.2210, -1.2050) 0.0426 (0.0409, 0.0432) - 

Survival 3.7195 (3.6630, 3.7390) 0.1957 (0.1838, 0.1998) - 

Model 3 Intercept Slope TempDays Slope PopSize 

Reproduction -1.2543 (-1.2690, -1.2490) 0.0304 (0.0281, 0.0312) 0.0105 (0.0090, 0.0111) 

Survival 3.5364 (3.4930, 3.5520) 0.0362 (0.0172, 0.0426) 0.0551 (0.0499, 0.0569) 

 

For model 1 a survival rate of 0.965 is obtained with a very coarse 95% posterior interval. This is 

somewhat larger than the estimate of 0.951 given at page 10 of the report. The reproduction parameter 

equals 0.242, also with a small interval, which is much larger than 0.163 = 0.14/(1-0.14) where 0.14 is the 

estimate given on page 12 of the report. This is of course due to the fcat that in our model only adults are 

reproductive.  

 



For models 2 and 3 the 95% posterior intervals for the regression parameters do not include 0, indicating 

that the covariates are “significant”. Moreover the effect of population size on both reproduction and 

survival is positive! This is opposite to the more usual density dependence. A graph of the fitted 

reproduction and survival parameters across time for the two models (black for model 2, red for model 3) 

is given below. 

 

 
 

It is clear that the models for reproduction are more or less equivalent, while the models for survival are 

not. The density dependence model (model 3 in red) shows a more or less steady increase throughout the 

last two decades.  

 

We consider model 2, with TempDays as covariate, as the more plausible model and used that to examine 

which harvest rate should be used to stabilize the population at 60k. Three scenarios were used: 

1. using the estimates for model 1:  reproduction = 0.2420 and survival = 0.9651 

2. model 2 with TempDays = 7:   reproduction = 0.2224 and survival = 0.9714  

3. model 3 with TempDays = 12:   reproduction = 0.2614 and survival = 0.9890  

 

Two initial situations were examined 

A. We started with a population of 15k Juveniles, 11k sub-adults and 54k adults (80k in total) and 

used our now deterministic model with different harvest rates to determine the harvest rate at 

which the population is reduced to approximately 60k in 4 years. Note that the actual harvest rate 

is larger because of the larger vulnerability of juveniles.  

B. Secondly an initial population of 8k juveniles, 7k sub-adult and 45 adults (totalling 60k) was used 

to determine in the same way the harvest rate at which the population remains more or less stable.  

In the table below the required harvest rates are given with the actual harvest rates in parenthesis. Also the 

resulting numbers that need to be harvested are given.  

 

 

Scenario Rate for A Rate for B Harvest for A Harvest for B 

1 15.5 (17.8) 10.6 (12.2) 15877 - 13241 8350 

2 15.5 (17.7) 10.4 (11.9) 15662 – 12996 8090 

3 18.0 (20.9) 13.1 (15.2) 19269 - 15873 10800 

 

The required numbers that need to harvested according to this approach are comparable, maybe 

somewhat larger, to those that are reported at page 20 of the report. 

 

For scenario 1 a yearly harvest of 8350 would keep the population stable at 60k. This could be compared 

to a more optimal 4-year strategy (in terms of numbers harvested) in which the population is allowed to 

grow during two years without harvesting after which two years are taken to return to a population size of 

60k, admittedly a rather extreme strategy. This strategy requires yearly harvests of 0, 0, 20k and 17k giving 

a total harvest of 37k. This is approximately 4k more than 4 years with a harvest of 8350, i.e. 



approximately 1k per year. Also for scenario 2 the difference between the two strategies is 1k per year, 

while for scenario 3 it is 2k per year. These difference are rather small given the uncertainty about the 

state-space model and its parameters. 

 

Discussion 

 

1. The alternative model can be used to estimate important population parameters without making 

the assumption that hunting mortality is some fixed fraction of total annual mortality. Moreover a 

three stage model, distinguishing sub-adults from adults, could be used. It must be stressed that 

the alternative model assumes that all natural mortality occurs during the winter, and that harvest 

only occurs before the census in November.  

2. The model further assumes that natural survival is constant across juveniles, sub-adults and 

adults. Trying to fit a model with a different survival for juveniles failed because there is no 

information in the data to estimate such a parameter. This could be remedied in case there is 

some information about the age structure of the population. 

3. The alternative model is a good start for an integrated population model (IPM). Such a model 

would require external data about reproduction (e.g. estimates of reproduction success) and/or 

external data about survival (e.g. using re-sighting of coloured bands), and/or information about 

the age structure of the population. One idea now is to supplement our model with the total 

annual survival rates which are available for the years 1990-2002. Setting up a full IPM model can 

however be a time-consuming task.  

4. A combination of the alternative model (and their variants) and the adaptive harvest management 

approach in the report would be most welcome.  

5. The question is whether a rather complicated (at least for us) adaptive system dynamics approach 

is necessary given the uncertainty about the model and its parameters. It seems that a simple 

approach with some different parameter values, as outlined above, is sufficient to get a 

quantitative idea of the harvest needed to reduce or to stabilize the population. 

 

 

 

R code and datasets 
 
## Define Settings 

library(R2OpenBUGS) 

ntimes    = 100000 

n.burnin  = ntimes 

n.iter    = ntimes 

n.chains  = 2 

seed      = 3 

debug     = TRUE 

 

## Nodes to monitor 

monitor = c("Autumn0", "Autumn1", "Autumn2", "reproduction", "theta") 

 

## Define OpenBugs model 

model = function()  

{ # Priors for the parameters 

  reproduction  ~ dunif(0,1) 



  theta ~ dunif(0,1) 

  # Spring  

  Spring0[1] ~ dnorm( 3000, 0.000001) %_% I(1000,) 

  Spring1[1] ~ dnorm( 3000, 0.000001) %_% I(1000,) 

  Spring2[1] ~ dnorm(20000, 0.000001) %_% I(10000,) 

  # Distribute harvest 

  Fraction[1] <- harvest[1]/(2*Spring0[1] + Spring1[1] + Spring2[1]) 

  Harvest0[1] <- 2*Fraction[1]*Spring0[1] 

  Harvest1[1] <- 1*Fraction[1]*Spring1[1] 

  Harvest2[1] <- 1*Fraction[1]*Spring2[1] 

  # Autumn  

  Autumn0[1] <- round(max(Spring0[1] - Harvest0[1], 1000)) 

  Autumn1[1] <- round(max(Spring1[1] - Harvest1[1], 1000)) 

  Autumn2[1] <- round(max(Spring2[1] - Harvest2[1], 10000)) 

  Autumn12[1] <- Autumn1[1] + Autumn2[1] 

 

  for (tt in 2:nt){ # System process 

    # Spring  

    birthrate[tt] <- (reproduction * theta * Autumn2[tt-1]) 

    Spring0[tt] ~ dpois(birthrate[tt]) 

    Spring1[tt] ~ dbin(theta, Autumn0[tt-1]) 

    Spring2[tt] ~ dbin(theta, Autumn12[tt-1]) 

    # Distribute harvest 

    Fraction[tt] <- harvest[tt]/(2*Spring0[tt] + Spring1[tt] + Spring2[tt]) 

    Harvest0[tt] <- 2*Fraction[tt]*Spring0[tt] 

    Harvest1[tt] <- 1*Fraction[tt]*Spring1[tt] 

    Harvest2[tt] <- 1*Fraction[tt]*Spring2[tt] 

    # Autumn  

    Autumn0[tt] <- round(max(Spring0[tt] - Harvest0[tt], 1000)) 

    Autumn1[tt] <- round(max(Spring1[tt] - Harvest1[tt], 1000)) 

    Autumn2[tt] <- round(max(Spring2[tt] - Harvest2[tt], 10000)) 

    Autumn12[tt] <- Autumn1[tt] + Autumn2[tt] 

    } 

 

  for (tt in 1:nt) { # Observation process 

    y0[tt]  ~ dpois(Autumn0[tt]) 

    y12[tt] ~ dpois(Autumn12[tt]) 

    } 

} 

 

 

  

## Write model to text file 

write.model(model, "z.txt") 

 

## Read Data and Inits from files 

data = as.list(read.table("z.dat", header=T)) 



data$nt = length(data[[1]]) 

init = as.list(read.table("z.ini", header=T)) 

inits = function() { init } 

 

## Run OpenBugs 

bugsout = bugs(data, inits, monitor, "z.txt", 

    n.chains=n.chains, n.iter=n.iter+n.burnin, n.burnin=n.burnin, digits=8,  

    debug=debug, codaPkg=FALSE, bugs.seed=seed) 

bugsout 

write.csv(bugsout$summary, "z.csv") 

q() 

 

File model.dat 

     y0    y12 harvest 

   3224  22776    1800 

   7215  25285    3000 

   1984  30016    2500 

   6154  27846    2300 

   4092  28908    2600 

   8260  26740    2800 

   6072  26928    2000 

   5400  32100    2500 

   5466  39334    1414 

   4736  33764    1973 

   2112  40988    2567 

   4905  40095    2753 

   4452  37548    3111 

   5448  37452    2849 

   5634  44666    2756 

   3796  48204    2894 

   9757  46643    5118 

   7658  52642    6797 

   8190  54810    8016 

   6867  56133    7546 

  15400  54600   12041 

  15600  64400   11429 

 

File model.ini 

     theta  reproduction 

      0.90          0.30 

 

 

 


